What is a Short Tandem Repeat (STR)?
Learning Center» Paternal Ancestry (Y-DNA)» Y-DNA STR» What is a Short Tandem Repeat (STR)?
The ads below are provided by Google.
by Genebase Users

STR Overview

A short tandem repeat (STR) is a type of DNA polymorphism where short sequences of DNA are repeated. STRs are usually considered “junk DNA” because they are introns and do not code for protein. The number of times a DNA sequence is repeated for a given STR is variable between different individuals and thus, STRs are often useful for forensic or genealogical studies.


The STRs found in the Y-DNA are very useful for genealogical studies to examine male lineage. A male individual’s Y-DNA STR is unique to his paternal line and can be determined through Y-DNA STR Testing. That means that all males who are descendents from the same male lineage will have exactly the same or a very similar Y-DNA STR pattern.

Need to cite this tutorial in your essay, paper or website? Use the following format:

What is a Short Tandem Repeat (STR)?. Genebase Tutorials. Retrieved July 23, 2014, from http://www.genebase.com/learning/article/63
Test your DNA markers today!
Get Test »
  • DNA tests starting from only $119
  • Search for immediate family lines
  • Receive instant match notifications when new matches are found
The ads below are provided by Google.
Other Tutorials
The Y-DNA SNP Haplogroup Backbone Test Panel contains 19 SNP markers throughout the Y-DNA. These 19 SNP markers are the defining markers for an individual’s Y-DNA haplogroup.
Your Y-DNA haplotype is the specific set of results obtained after testing a set of STR markers on your Y-DNA.
The Y-DNA Test examines several different STR Marker Types.
Find out what's new in Version 2 of the I Subclade Test Panel.
As the research in I subclades progresses, the scientific community routinely renames existing subclades to accommodate rapid growth of the Y-DNA phylogenetic tree.
Learn how Y-DNA Haplogroup G helped shape present day Middle Eastern societies and how it plays a significant role in the peopling of modern day India.
Individuals who have taken the Haplogroup R Subclade test may benefit from selectively testing newly discovered SNPs that are relevant to their particular subclade.
Discover the different types of genetic markers found in the Y-DNA and how it allows us to trace our paternal lineage.
Dates of discovery for SNPs that define subclades downstream of R1b (M343+) are listed.
Unlike all of the other chromosomes, the Y-Chromosome is unique because it is passed down relatively unchanged along the male lineage and thus holds valuable information about a male’s ancestry.
DYS464 is an unique Y-DNA STR marker which is known to have 4 to 7 alleles (a to d for 4 or a to g for 7).
Our discussion will cover human history that dates back more than 65,000 years (65kya) and encompasses a large number of major empires and events in Asian history.
MRCA stands for “Most Recent Common Ancestor”. When comparing two individuals, the MRCA is the most recent ancestor from which the two individuals descended.
With strong traces in Northern Europe, this group has made a great impact in Europe, even playing a large role in Viking ancestry.
DNA Haplogroup E is the most prominent group for individuals of African descent.
The majority of Y-DNA haplogroup L can be found within the Indian subcontinent, accounting for a large proportion of Indian Y-chromosomes.
Haplogroup O, defined by SNP marker M175, is thought to have appeared in East Asia approximately 35,000 years ago. Today, Haplogroup O can be detected across Asia and Oceania.
As research into the R subclades progresses at a rapid pace, the scientific community routinely renames existing subclades to accommodate the rapid growth of the Y-DNA phylogenetic tree.
Y-DNA STR markers available at Genebase and the corresponding motifs used for allele designation in Version 3.5.
Learn how to compare Y-DNA markers between 2 different individuals.
Learn about the steps are involved to obtain your Y-DNA haplotype.
Y-DNA Haplogroup J has strong Middle Eastern roots and has played a large part in shaping populations throughout Europe.
Commercial DNA testing laboratories follow different nomenclature for determining their marker values. The only accurate and reliable method to determine conversions required between different...
People whose ancestors are from the western coast of Europe often share in common a small group of Y-Chromosome STR markers. The group of Y-Chromosome markers which are frequently found in western...
It's the dominant group of Europe, playing one of the largest roles in shaping modern day European populations.
Y-DNA Haplogroup Q is widespread at low frequencies throughout the Middle East, Asia and Siberia, and at high frequencies in the Americas.
As research into the J subclades progresses at a rapid pace, the scientific community routinely renames existing subclades to accommodate the rapid growth of the Y-DNA phylogenetic tree.
Y-DNA STR markers mutate at a rate of approximately one mutation every 20 generations. The relatively rapid mutation rate of STR markers compared to the slow mutation rate of SNP markers makes STR...
A number of STR markers can be tested on the Y-DNA. The more markers that are tested, the more discriminating the matches when comparing to other individuals.